Why Local LLMs¶
Running large language models locally provides significant advantages over cloud-based APIs for many use cases.
Key Benefits¶
Privacy & Data Sovereignty¶
Your data never leaves your machine:
- Code stays local - Proprietary source code, credentials, and business logic remain on your hardware
- No telemetry - No usage data sent to third parties
- Compliance - Meet data residency requirements for regulated industries
- Air-gapped capable - Run inference without any network connection
Cost Efficiency¶
After initial hardware investment, marginal cost approaches zero:
| Scenario | Cloud API | Local (128GB Mac) |
|---|---|---|
| 1M tokens/day | ~$30-150/day | $0 |
| Monthly (30M tokens) | $900-4500 | $0 |
| Annual cost | $10,800-54,000 | ~$3,500 one-time |
Break-even typically occurs within 2-6 months for heavy API users.
Latency¶
Local inference eliminates network round-trips:
| Metric | Cloud API | Local |
|---|---|---|
| Time to first token | 200-800ms | 20-100ms |
| Network dependency | Yes | No |
| Rate limits | Yes | No |
Flexibility¶
Full control over the inference stack:
- Model selection - Run any open-weights model
- Parameter tuning - Adjust temperature, top_p, context length
- No quotas - Generate unlimited tokens
- Experimentation - Test multiple models without cost concerns
When Local Makes Sense¶
Ideal Use Cases¶
| Use Case | Why Local Works |
|---|---|
| AI-assisted coding | Code privacy, low latency, high token volume |
| Document processing | Private data, batch processing |
| Development/testing | Rapid iteration without API costs |
| Offline workflows | Travel, air-gapped environments |
When Cloud APIs Are Better¶
| Scenario | Reason |
|---|---|
| Cutting-edge models | GPT-4, Claude 3.5 not available locally |
| Low volume usage | API costs < hardware investment |
| Mobile/embedded | Insufficient local compute |
| Multimodal (advanced) | Image/video models need more VRAM |
Model Capabilities¶
Modern open-weights models are highly capable:
Model Quality Comparison (2025-2026):
┌────────────────────────────────────────────────┐
│ Frontier Models (Cloud Only) │
│ GPT-4, Claude 3.5 Sonnet, Claude Opus 4.5 │
├────────────────────────────────────────────────┤
│ Near-Frontier (Runnable Locally) │
│ Llama 3.1 405B, Qwen 2.5 72B │
├────────────────────────────────────────────────┤
│ Excellent Local Options │
│ Llama 3.3 70B, DeepSeek V3, Mistral Large 2 │
├────────────────────────────────────────────────┤
│ Fast & Good │
│ Qwen 2.5 32B, Llama 3.2 8B, Mistral 7B │
└────────────────────────────────────────────────┘
For coding tasks specifically, models like DeepSeek Coder V2 and Qwen 2.5 Coder rival cloud APIs.
Hardware Requirements¶
See Unified Memory for detailed requirements.
Minimum viable setup: - 32GB RAM - 7-13B models at Q4 - 64GB RAM - 34B models, limited 70B - 128GB RAM - Comfortable 70B, possible 405B at low quant
Getting Started¶
- Review your architecture options
- Choose an inference engine
- Select appropriate models
See Also¶
- Unified Memory - Memory architecture for LLMs
- Architecture Decisions - Native vs container vs VM
- Choosing Models - Model selection guide